Szostak_Photo Michal Szostak

email: michal.szostak@rutgers.edu
office: Olson 204

Research Interests

The central theme of our research is synthetic organic and organometallic chemistry with a focus on the development of new synthetic methods based on transition metal catalysis and various aspects of transition metal mediated free radical chemistry and their application to the synthesis of biologically active molecules.

Selected Publications

  1. Graphene-Catalyzed Direct Friedel-Crafts Alkylation Reactions: Mechanism, Selectivity and Synthetic Utility. Hu, F.; Patel, M.; Luo, F.; Flach, C.; Mendelsohn, R.; Garfunkel, E.; He, H.; Szostak, M. J. Am. Chem. Soc. 2015, 137 [doi]
  2. General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically-Controlled Chemoselective N-C Activation. Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2015, 54 [doi]
  3. Aminoketyl Radicals in Organic Synthesis: Stereoselective Cyclization of 5- and 6-Membered Cyclic Imides to 2-Azabicycles using SmI2-H2O. Shi S.; Szostak, M. Org. Lett. 2015, 17, 5144 [doi]
  4. Sterically-Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N-C Cleavage in Twisted Amides. Meng, G.; Szostak, M. Org. Lett. 2015, 17 [doi]
  5. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583. [doi]
  6. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon Bridged Twisted Amides using ab Initio Molecular Orbital Methods. Implications for Amidic Resonance along the C-N Rotational Pathway. Szostak, R.; Aubé, J.; Szostak, M. J. Org. Chem. 2015, 80, 7905. [doi]
  7. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C-N Rotational Pathway. Szostak, R.; Aubé, J.; Szostak, M. Chem. Commun. 2015, 51, 6395. [doi]
  8. Pd-Catalyzed C-H Activation: Expanding the Portfolio of Metal-Catalyzed Functionalization of Unreactive C-H Bonds by Arene-Chromium π-Complexation. Hu, F.; Szostak, M. ChemCatChem 2015, 7, 1061. [doi]
  9. Highly Chemoselective Reduction of Amides (Primary, Secondary and Tertiary) to Alcohols using SmI2/H2O/Amine under Mild Conditions. Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 2268. [doi]
  10. Substrate-Directable Electron Transfer Reactions. Dramatic Rate Enhancement in the Chemoselective Reduction of Cyclic Esters using SmI2-H2O: Mechanism, Scope and Synthetic Utility. Szostak, M.; Spain, M.; Choquette, K. A.; Flowers, R. A., II; Procter, D. J. J. Am. Chem. Soc. 2013, 135, 15702. [doi]
  11. Selective Reduction of Barbituric Acids using SmI2-H2O: Synthesis, Reactivity and Structural Analysis of Tetrahedral Adducts. Szostak, M.; Spain, M.; Behlendorf, M; Procter, D. J. Angew. Chem. Int. Ed. 2013, 52, 12559. [doi]
  12. Non-Classical Lanthanide(II) Iodides: Uncovering the Importance of Proton Donors in TmI2-Promoted Electron Transfer. Facile C-N Bond Cleavage in Unactivated Amides. Szostak, M.; Spain, M.; Procter, D. J. Angew. Chem. Int. Ed. 2013, 52, 7237. [doi]
  13. Chemistry of Bridged Lactams and Related Heterocycles. Szostak, M.; Aubé, J. Chem. Rev. 2013, 113, 5701. [doi]
For more detail, please see the Szostak Group Web Site

Inquiries from enthusiastic and motivated students interested in various areas of organic chemistry and catalysis are always welcome.